Extra force from asynchronous stimulation of cat soleus muscle results from minimizing the stretch of the common elastic elements.

نویسنده

  • Thomas G Sandercock
چکیده

Rack and Westbury showed that low-frequency asynchronous stimulation of a muscle produces greater force compared with synchronous stimulation. This study tested the hypothesis that the difference results from the dynamic stretch of the common elastic elements. In eight anesthetized cats, the soleus was attached to a servomechanism to control muscle length and record force. The ventral roots were divided into four bundles so each innervated approximately 1/4 of the soleus. The elasticity shared by each part of the muscle was estimated and the servomechanism programmed to compensate for its stretch. At each test frequency (5, 7.5, and 10 Hz), the muscle was stimulated by asynchronous stimulation, synchronous stimulation, summation of force with each part stimulated individually, and summation with each part stimulated individually and the servomechanism mimicking tendon stretch during asynchronous stimulation. Muscle length was isometric except for the last protocol. The observed differences were small. The greatest difference occurred during stimulation at 5 Hz with muscle length on the ascending limb of the length-tension curve. Here, the average forces, normalized by asynchronous force, were asynchronous, 100%; synchronous, 73%; summation, 110%; and summation with stretch compensation, 98%. The results support the hypothesis and suggest that the common elasticity can be used to predict force gains from asynchronous stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extra Force from Asynchronous Stimulation of Cat Soleus Muscle Results from Minimizing the Stretch of the Common Elastic Elements

Rack and Westbury (1969) showed that low frequency asynchronous stimulation of a muscle produces greater force compared to synchronous stimulation. This study tested the hypothesis that the difference results from the dynamic stretch of the common elastic elements. In 8 anaesthetized cats the soleus was attached to a servomechanism to control muscle length and record force. The ventral roots we...

متن کامل

Nonlinear summation of force in cat soleus muscle results primarily from stretch of the common-elastic elements.

The complex connective tissue structure of muscle and tendon suggests that forces from two parts of a muscle may not summate linearly. This study measured the nonlinear summation of force (F(nl)) in whole cat soleus during isometric and ramp movements. In six anesthetized cats, the soleus was attached to a servomechanism to control muscle length and record force. The ventral roots were divided ...

متن کامل

Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.

Muscle is usually studied under nonphysiological conditions, such as tetanic stimulation or isovelocity movements, conditions selected to isolate specific properties or mechanisms in muscle. The purpose of this study was to measure the function of cat soleus muscle during physiological conditions, specifically a simulation of a single speed of slow walking, to determine whether the resulting fo...

متن کامل

SENSORIMOTOR CONTROL OVER FUSIMOTOR NEURONS OF THE TENUISSIMUS MUSCLE IN THE A NESTHETIZED CAT: A QUALITATIVE PRIMARY AFFERENT RECORDING

Cortical control of the sensory output of muscle spindles was studied in thirteen anesthetized cats in the present experiment. Gamma motoneuron activity was monitored during electrical stimulation of the sensorimotor cortex while recording from single primary afferents from the tenuissimus muscle. Findings are as follows: 1. The state of anesthesia is crucial in obtaining reproducible resu...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2006